

Accelerating the future of aerospace

2nd Effectiveness Study of Flight Time Limitations (FTL 2.0)

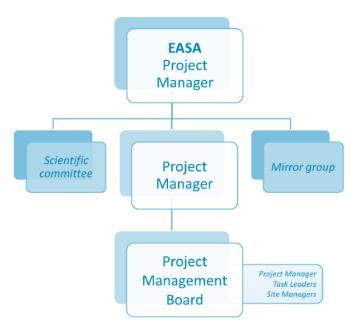
EASA Fatigue Risk Management Conference Madrid | 4/5 Feb 2025

JEPPESEN.

- Review the effectiveness of the flight and duty time limitations and rest requirements
 - In addition to the work performed during previous contract (FTL1).
- An assessment of the impact on aircrew alertness of:
 - The following aircrew duty periods
 - 1. Duties of more than 13 hours at the most favourable time of the day;
 - 2. Duties of >11 hours for crew members in an unknown state of acclimatisation;
 - 3. Duties including a high level of sectors (>6);
 - 4. On-call duties: other than airport standby followed by flight duties.
 - Controlled Rest: including an analysis of the conditions and circumstances under which CR is used

Consortium

- Netherlands Aerospace Centre (NLR) consortium lead
 - Alwin van Drongelen (PM)
- Stockholm University consortium partner
 - Torbjörn Akerstedt
- Finnish Institute of Occupational Health (FIOH) consortium partner
 - Mikael Sallinen
- German Aerospace Centre (DLR) subcontractor
 - Daniel Aeschbach & Dorothee Fischer
- Jeppesen subcontractor
 - Tomas Klemets


<u>EASA</u>

- Project Manager: Emmanuel Isambert
- Technical Lead: Irina Petrova Scientific Committee
- Alex Holmes, Barbara Stone, Kristjof Tritschler
 Mirror Group
- representatives from member states, regulators, airlines and aircrew associations

FTL 2.0 timeline

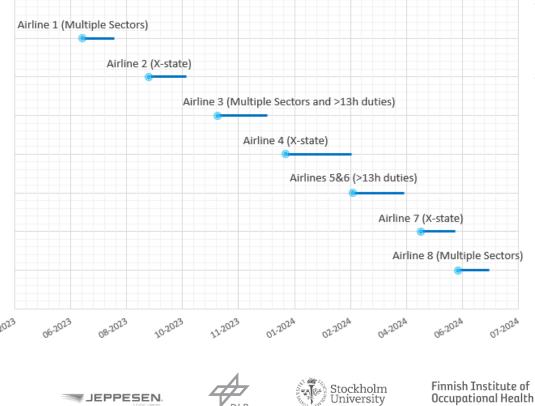
	Phase 1	Phase 2	2	Phase 3	
	December 2021 - January 2023 Induction, roster selection & controlled rest characterisation	March 2022 - Decemb Data gathering and c		February 2025 - May 2025 Data merging and elaboration of fin recommendations.	nal
Activities	Task 1.1 - baseline	Task 2.1 - define scope		task 2.5 - merge results	
	Task 1.2 - target aircrew	Task 2.2 - data collection Task 2.3 - analyses		task 2.6 - suitability fatigue mitigation task 2.7 - conclusions/recommendation	าร
4		Task 2.4 - safety metrics			

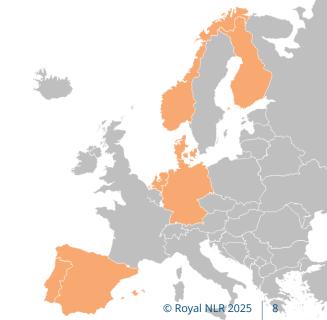
Stockholm University

Today (10:15-11:30)

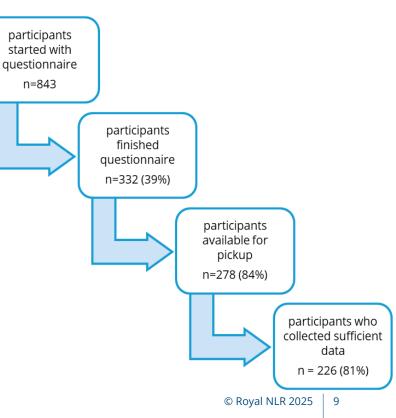
- Six presentations
- 10-15 minutes per FDP of interest
 - Few questions in between
 - Longer discussion after last presentation
- D2.2 (data collection campaign)
- D2.3 (results per FPD of interest).
 - 1. FDP1 (>13h duties) Mikael Sallinen
 - 2. FDP3 (X-state duties) Dorothee Fischer
 - 3. FDP4 (>6 sector duties) Torbjorn Akerstedt
 - 4. FDP5 (other than airport standby) M.S.
 - 5. Controlled Rest Laurie Marsman
- No recommendations for the regulations yet

Dedicated to innovation in aerospace


Task 2.2FTL 2.0 Data Collection Campaign


- Eligible airlines selected based on
 - Size, geographical region, transport type
 - Actual flown schedules & willingness to participate
- Aim for high quality data and within subject analysis
 - Tailored procedure per airline
 - Dedicated measurement equipment
 - Data collection over consecutive duty days, for multiple weeks
 - Real-time data monitoring and personal contact

- 36 airlines approached
 - 19 willing to participate
 - 8 selected based on schedules
- Measurements July 2023 July 2024



- 226 participants with good quality data •
 - 56% male
 - 55% cabin crew
 - 86% full-time
 - 96% in good health
 - High average work ability (8.3 out of 10)
 - Workload past month
 - the same as 'normal' (41%) •
 - somewhat lower (19%) •
 - somewhat higher (24%) •
- 3.525 duty days with questionnaire data ٠
 - Fatigue (KSS and SP)
 - Performance (PVT), sleep, workload
 - Flight and duty characteristics

University

Questions

Dedicated to innovation in aerospace

Task 2.3Analysis of the findings from the data collection

Dedicated to innovation in aerospace

FDPs of more than 13 hours at the most favourable time of the day (FDP1)

Mikael Sallinen

Aims and hypotheses

- The main aims were to
 - compare the level of fatigue between FDPs > 13 h and FDPs \leq 13 h flown at the most favourable time of the day
 - identify the main predictors of on-duty fatigue during these FDPs.
- The hypotheses were that
 - fatigue is higher during FDPs > 13 h than during FDPs \leq 13 h.
 - FDP duration is a significant predictor of on-duty fatigue.

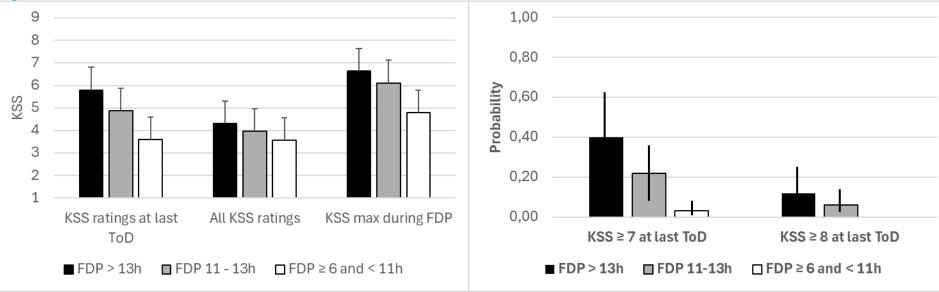

Results

Table 1. Descriptives of participants and FDPs. All FDPs start 06:00h - 13:29h, include 1-2 non-augmented flights, and are flown in a known state of acclimatisation.

Variable	FDP > 13h	FDP 11 - 13h	FDP ≥ 6 and < 11h
Number of FDPs	33	46	133
Number of participants (pilots / cabin crew)	29 (12/17)	41 (24/17)	82 (38/44)
Age (years)	40 ± 8	42 ± 9	40 ± 9
Gender (m/f) (%)	45/55	43/57	42/58
Main sleep + naps (hours)	7.45 ± 1.65	7.54 ±1.63	6.94 ± 1.54
FDP start time (h:min)	10:16 ± 1:37	10:51 ± 2:03	8:45 ± 2:24
FDP end time (h:min)	23:48 ± 1:38	22:46 ± 2:49	17:10 ± 2:59
FDP duration (h:min)	13:31 ± 0:17	12:07 ± 0:35	8:25 ± 1:19
WOCL encroachment (%)	9.1	0	0
FDP type (Early start/Late finish/Night/Non-disruptive) (%)	0/67/9/24	0/54/0/46	20/2/0/78
JEPPESEN. JUR Stockholm Cocupational H			© Royal NLR 2025 14

Results – KSS* at last ToD

Mean (\pm SD) KSS ratings during FDPs > 13h and control FDPs (11-13h and 6 - < 11h).

Probability (95% CI) of high fatigue (KSS \geq 7) at last ToD during FDPs > 13h and control FDPs (11-13h and 6 - < 11h).

*Karolinska Sleepiness Scale

- 1 Extremely alert, 2 Very alert, 3 Alert, 4 Rather alert, 5 Neither alert nor sleepy, 6 Some signs of sleepiness,
- 7 Sleepy, but no effort to keep awake, 8 Sleepy, some effort to keep awake, 9 Very sleepy, great effort to keep awake

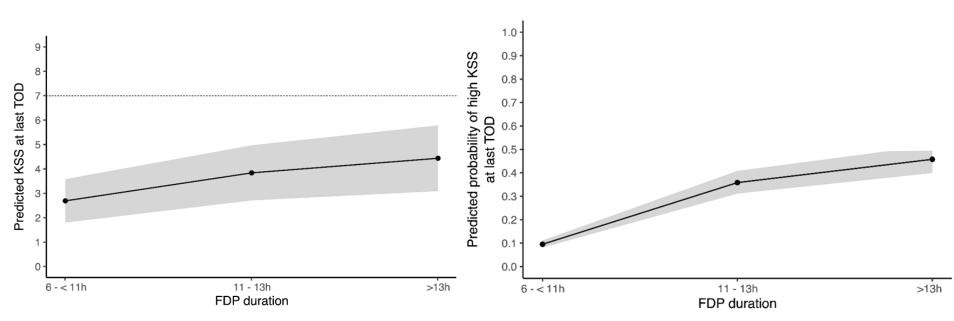
JEPPESEN

Main results of regression analyses

Main predictors¹ of KSS level Main predictors¹ of KSS \geq 7 FDP duration* FDP duration** fatigue level higher for FDPs >13h - fatigue level higher for FDPs >13h and 11-13h and 11-13h than FDPs 6 - <11h than FDPs 6 - <11h Number of sectors* Time awake** fatigue level higher for 2-sector FDPs - the longer the time awake, the higher the level than single sector FDPs of fatigue Time awake* **significant only in single variable analysis the longer the time awake, the higher

*significant in single and multivariable analysis

the level of fatigue


¹Predictors: age, crew category, gender, # of sectors, FDP duration, time of day, time awake, prior sleep

JEPPESEN

Results: predicted fatigue

Predicted KSS values (mean, SE) at last ToD by FDP duration based on the multivariable analysis. 148 FDPs, 86 subjects.

Predicted probability of high fatigue (KSS ≥ 7) at last ToD by FDP duration based on the multivariable analysis. 148 FDPs, 86 subjects.

Stockholm

niversitv

Conclusions

- FPD duration is a significant fatigue factor during FDPs "flown at the most favourable time of the day".
- Fatigue (at last sector's ToD) is at a higher level during FDPs > 13h and FDPs 11h 13h than FDPs 6h -11h.
- FDPs > 13h and FDPs 11h 13h did not statistically differ from one another in the present study, which may be due to insufficient data on FDPs > 13h.
- The results show that long FDPs "flown at the most favourable time of the day" are often disruptive schedules:
 - 67% of FDPs > 13h fell into the category of late finish FDP.
 - 9% of the FDPs > 13h were night FDPs .
 - Only 24% of FDPs > 13h were non-disruptive schedules (day FDPs).
 - 80 % of FDPs < 11h were day FDPs.</p>

Questions

Dedicated to innovation in aerospace

FDPs of more than 11 hours in an unknown state of acclimatization (FDP3) Dorothee Fischer

States of acclimatisation

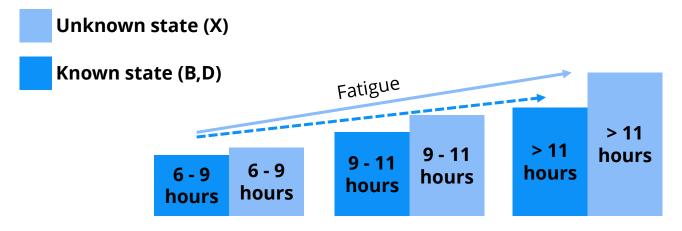
Definitions of acclimatisation states according to EASA ORO.FTL.105.

Time difference (h)	Time elapsed since reporting at reference time					
between reference time and local time where the crew member starts the next duty	< 48h	48 – 71:59	72 – 95:59	96 – 119:59		
< 4	В	D	D	D	D	
≥4 and ≤6	В	Х	D	D	D	
>6 and ≤9	В	Х	Х	D	D	
>9 and ≤12	В	Х	Х	Х	D	

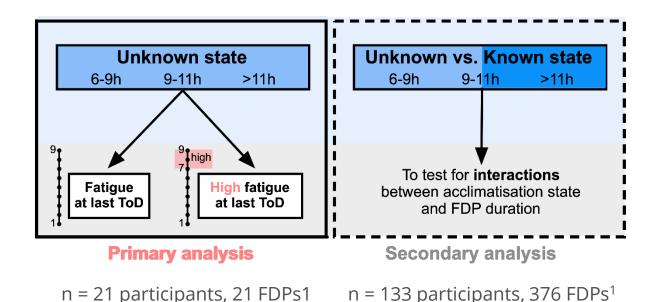
Known state (B,D)

Stockholm

niversity


Unknown state (X)

Aims and hypotheses regarding FDPs > 11h flown in unknown state of acclimatisation


- Fatigue increases with longer FDP duration.
- Fatigue is higher when in an unknown state of acclimatisation.
- The increase in fatigue is steeper for unknown-state FDPs ("interaction effect").

Sample and analyses

Stockholm

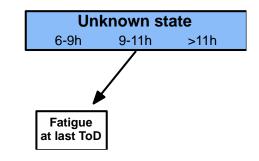
University

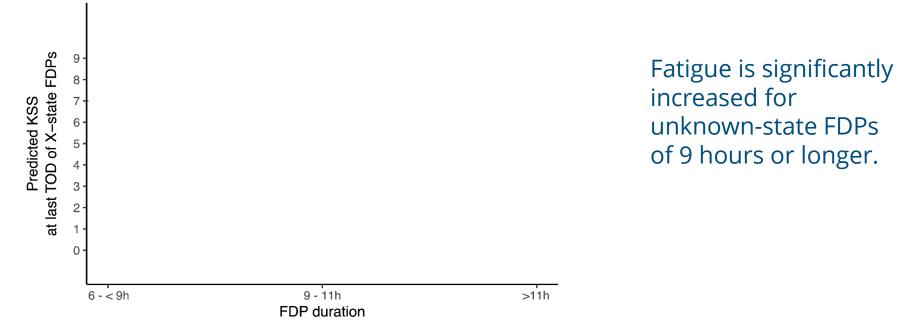
Finnish Institute of Occupational Health ¹max. 3 sectors, min. 6-h duration, non-augmented.

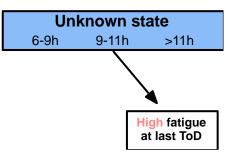
Description of unknown-state FDPs

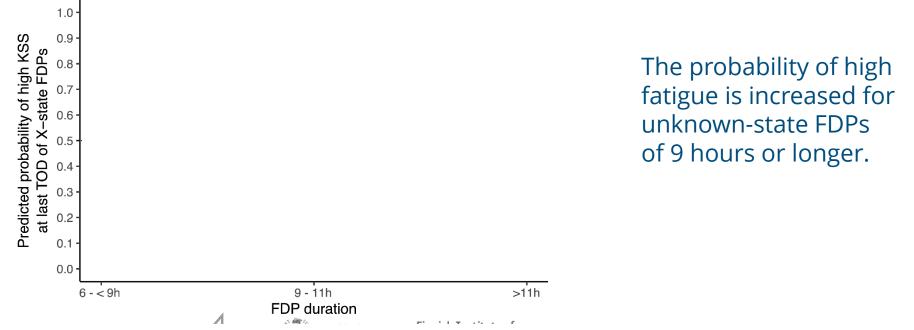
Available X-state combinations between time zones crossed and time elapsed since reporting (N = 21 participants, 1 FDP per participant).

Time difference (h) Time elapsed since reporting at reference time					
between reference time	< 48h	48 – 71:59 72 – 95:59		96 – 119:59	≥120
and local time where the					
crew member starts the					
next duty					
< 4	В	D	D	D	D
≥4 and ≤6	В	18 ¹	D	D	D
>6 and ≤9	В	2 ¹	11	D	D
>9 and ≤12	В				D


¹Of these 21 X-state FDPs, 14 (67%) were nighttime FDPs.

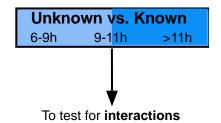


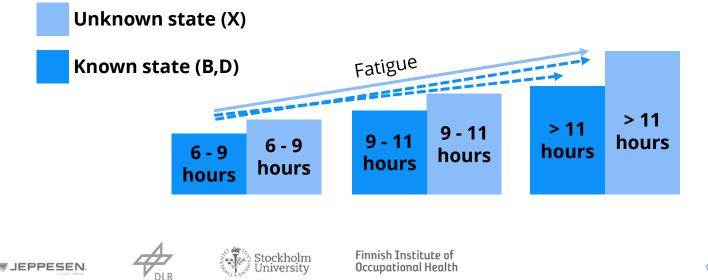

Does fatigue increase with longer durations of unknown-state FDPs?



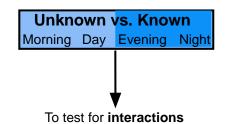
Adjusted for age, gender, crew category, sectors, time awake, time of day, 24-h sleep duration, flight direction, timezones crossed, and agover length

Does the occurrence of **high** fatigue also increase with longer durations of unknown-state FDPs?

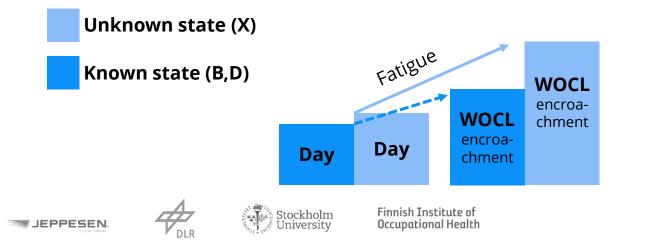



Adjusted for age, gender, crew category, sectors, time awake, time of day, 24-h sleep duration, flight direction, timezones crossed, and layover length

Does an unknown state exacerbate fatigue of **long** FDPs?



- Acclimatisation state did not interact with FDP duration.
- An unknown state increased the likelihood of high fatigue at last ToD.



Does an unknown state exacerbate fatigue of **night** FDPs?

- Acclimatisation state <u>did</u> interact with **FDP timing**:
 - nighttime (during WOCL) and early-morning (start 2:00-6:59) FDPs appeared to exacerbate the effects of flying in an unknown-state on fatigue.

6-9h

Conclusions

- For non-augmented crews operating during the nighttime in an unknown state of acclimatisation, fatigue was significantly increased for FDP durations of 9 hours or more.
- Effects of 'X-state' vs. 'nighttime' could not be fully separated, since daytime X-state FDPs were limited.

Unknown vs. Known state WOCL encroachment

Unknown state

9-11h

>11h

- Analyses suggest that an unknown state of acclimatisation increases fatigue; and that
- fatigue at last ToD is exacerbated by the combination of an unknown state and WOCL encroachment.

Questions

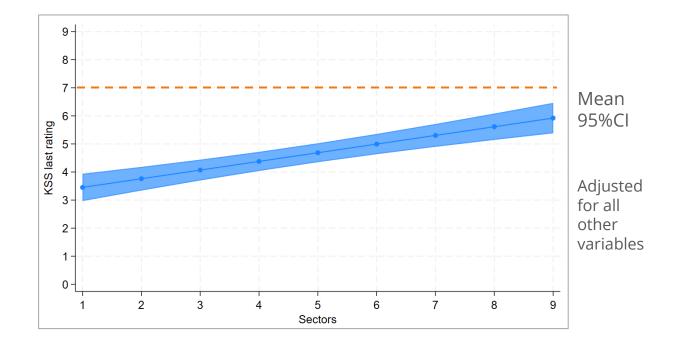
Dedicated to innovation in aerospace

FDPs with a high level of sectors (> 6) (FDP4)

Torbjörn Akerstedt

- Main questions
 - Does fatigue increase gradually with increasing number of sectors.
 - Is flying >6 sectors during an FDP associated with more fatigue than fewer sectors
 - To what extent are high fatigue levels reached at high levels of sectors
- N= 77, observations/participant = 4.7
- Mixed model regression vs fatigue outcomes

(ni


Variables that predict fatigue (simultaneously)

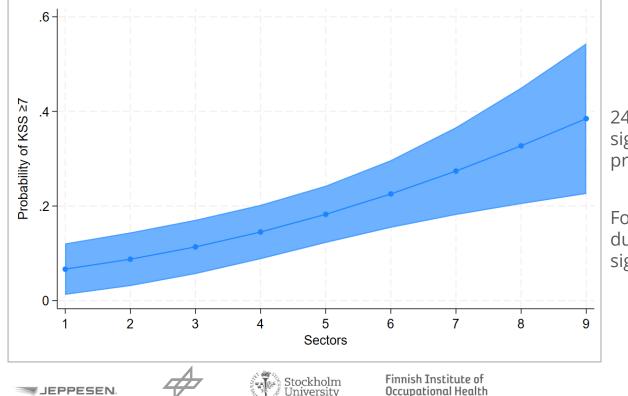
- Sectors (1-9) (increases fatigue)
- FDP duration (increases fatigue)
- Sleep (reduces fatigue)
- Age, gender , crew category, time awake, time of day (no nights) do not affect fatigue

Stockholm

University

KSS as a function of Sectors and FDP duration

	Number of Sectors						
FDP hours ↓	1	2	3	4	5	6	7
13	4.9±.5	5.1±.4	5.2±.3	5.3±.3	5.5±.2	5.6±.2	5.8±.2
12	4.8±.4	4.9±.4	5.0±.3	5.2±.2	5.3±.2	5.5±.2	5.6±.2
11	4.6±.4	4.7±.3	4.9±.3	5.0±.2	5.1±.2	5.3±.2	5.4±.2
10	4.4±.3	4.6±.3	4.7±.2	4.9±.2	5.0±.1	5.1±.1	5.3±.2
9	4.3±.3	4.4±.2	4.5±.2	4.7±.2	4.8±.1	4.9±.1	5.1±.2
8	4.1±.3	4.2±.2	4.4±.2	4.5±.1	4.6±.1	4.8±.1	4.9±.2
7	3.9±.2	4.1±.2	4.2±.1	4.3±.1	4.5±.1	4.6±.2	4.8±.2



Stockholm

University

24h sleep is the only significant other predictor

For KSS≥8 only sleep duration became a significant (neg) predictor

- SP is not predicted by sectors, but by FDP duration
 - multivariable model
- But sectors is still a significant predictor in the single variable analysis
- The association between KSS and SP is very strong

- Fatigue (KSS) increases with number of sectors, and particularly at the transition into ≥6 sectors
- FDP duration also increases fatigue independently from sectors
- The considerable importance of sleep duration for fatigue should be considered

Questions

	FDPs with 1-6 Sectors	FDPs with >6 Sectors
Observations	284	94
KSS at last rating	4.3±2.0	4.9±2.0
KSS≥7 at last rating	14.4%	26.8%
Age	41.3±9.0	43.9±9.4
Gender (male) N/%	31.3%	68.1%
Crew category Cockpit N/%	34.9%	75.5%

Stockholm University

When instead>6 vs		
≤6 are inserted, the		
result becomes		
0.57±.22*		

Appr same result if all data (incl long-haul) are used

Predictor	KSS single variable Coeff±se/Constant	KSS multivariable Coeff±se	
Age	-0.01±.02/5.0	-0.02±.01	
Cabin (Cockpit ref)	-0.13±.36/4.6	-0.07±.44	
Male (fem ref)	0.17±.36/4.4	0.14±.43	
Sectors (1-9)	0.31±.05***/ 3.1	0.16±.07*	
FDP duration	0.23±.03***/ 2.8	0.16±.06**	
Timeawake	0.11±.03***/3.3	0.01±.05	
Morning, ref			
Day	-0.78±.22***	-0.01±.23	
Evening	-0.04±.24/4.8	0.39±.34	
24hSleep	- 0.27±.06***/ 6.4	-0.27±.06***	
Constant (multiv)		5.30	
Service Tractitute of			

DIR

Dedicated to innovation in aerospace

nu

Other than airport standby FDPs (FDP5)

Mikael Sallinen

Aim and research questions

Aim

• to examine the 18-h awake time rule¹

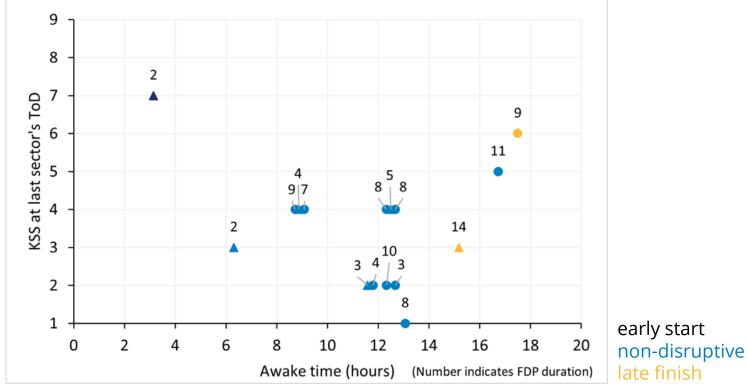
What is the association of awake time with fatigue during FDPs assigned during other standby periods?

- What is the association of *prior sleep* with fatigue during FDPs assigned during other standby periods?
- What is the association of *sleep-to-awake time ratio* with fatigue during FDPs assigned during other standby periods?
- Do fatigue levels differ between FDPs assigned during other standby periods and FDPs scheduled in duty rosters?

¹combination of standby and an assigned FDP should not lead to an awake time longer than 18 hours

JEPPESEN

Results (1)


Table 1. Descriptives of participants and FDPs assigned during other standbys.

Variable	Assigned FDPs
Number of FDPs	27
Number of FDPs measured from pilots /cabin crew	17/10
Number of pilots / cabin crew	13/8
Age (years)	42.0 ± 9.6
Gender (m/f) (%)	48/52
Commuting time (min)	49.0 ± 43.5
FDP start time (h:min)	12:24 ± 3:48
FDP end time (h:min)	19:13 ± 4:18
FDP duration (h:min)	6:49 ± 2:58
FDP type (ES/LF/N/ND) (%) ¹	7/11/0/82
Number of sectors	2.2 ± 1.2
Standby hours prior to an assigned FDP	1:53 ± 1:59

¹ES = Early start FDP (start time 05:00h – 05:59h (early type country) or 05:00h – 06:59h (late type country, most restrictive); LF = Late finish FDP (= end time 23:00h – 01:59h (early type country, most restrictive) or 00:00h – 01:59h (late type country)); N = Night FDP (any portion of the FDP between 02:00h – 04:59h); ND = Non-disruptive FDP (whole FDP between 06:00h – 22:59h (early type country) or FDP between 07:00h – 23:59h (late type country)).

Results (2)

Figure 1a. Scatter plot between **prior awake time** and KSS ratings at last ToD. N=16.

Stockholm University

Results (3)

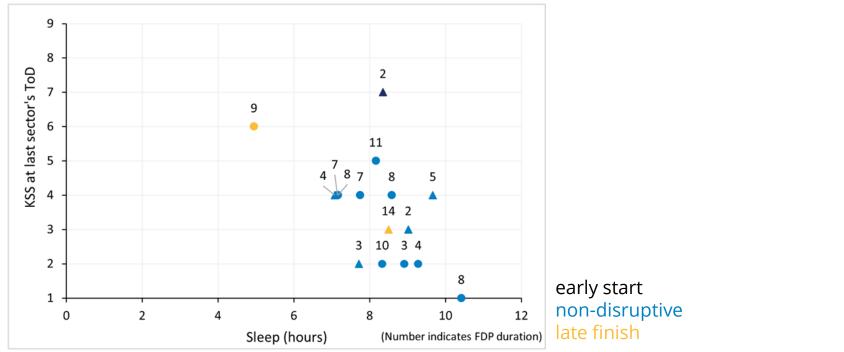


Figure 1b. Scatter plot between **prior sleep** and KSS ratings at the ToDs of the last sectors. N=16.

- unadjusted model for prior sleep: coefficient -0.782, 95% CI -0.990;-0.574, p<0.001 - adjusted model for prior sleep*: coefficient -0.685, 95% CI -1.116;-0.254, p=0.005 *age, gender, and occupation as covariates

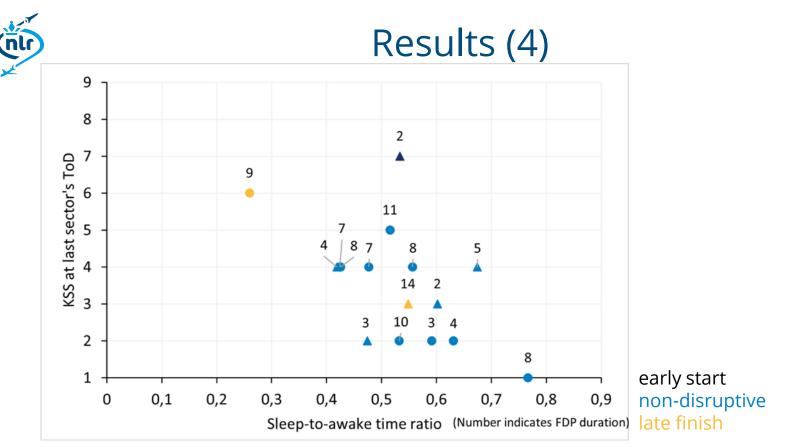


Figure 1c. Scatter plot between **sleep-to-awake ratio** and KSS ratings at the ToDs of the last sectors. N=16.

- unadjusted model for SWR: coefficient -8.446, 95% CI -10.894;-5.998, p<0.001

- adjusted model for SWR*: coefficient -6.488, 95% CI -10.483;-2.494, p=0.004
- *age, gender, and occupation as covariates

Results (5)

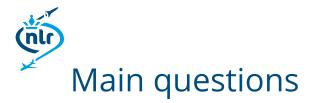
Table 2. Comparison of KSS ratings between FDPs assigned during other standby and FDPs scheduled in duty rosters.

Outcome	Ν	FDPs assigned during standbys	FDPs scheduled in duty roster	Paired samples t-test
KSS at ToD of last sector	9	3.3 ± 1.2	3.3 ± 1.4	-
Mean KSS during FDP	19	3.4 ± 1.2	3.6 ± 1.0	t(18)=-1.049 p=0.308
Max KSS during FDP	19	4.6 ± 1.9	4.7 ± 1.6	t(18)=-0.129 p=0.899
	Stockholm University	Finnish Institute of Occupational Health		© Royal NLR 2025 48

V_{DLR}

Conclusions

- At least daytime FDPs assigned during other standbys do not appear to break the 18h rule.
- Self-rated fatigue during FDPs assigned during other standby seems to be associated more closely with prior sleep and prior sleep-to-awake time ratio than with prior awake time.
- Self-rated fatigue levels during these assigned FDPs do not differ from corresponding FDPs scheduled in the duty roster.
- Further research is needed to examine the effectiveness of the 18 hours awake time cap rule in the context of assignments which end late and/or during the night.


Questions

Dedicated to innovation in aerospace

Conditions, circumstances, and reasons for Controlled Rest (CR)

Laurie Marsman

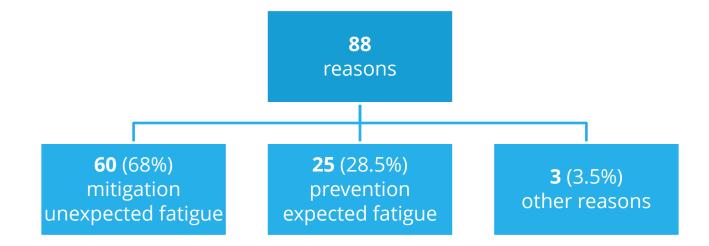
- 1. What are the characteristics of flights that have a high prevalence of CR?
- 2. What are the conditions, circumstances, and reasons for flight crew members to use CR?
- 3. Is there a difference in fatigue between flights in which CR is taken and in similar flights in which it is not taken?

39 (38.2%) out of 102 pilots reported CR

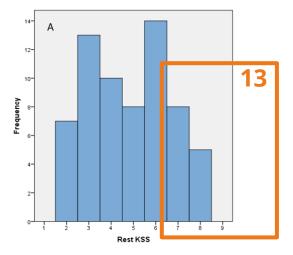
- 43.05 ± 8.64 years old
- 37 (94.9%) male
- Experience 15.87 ± 8.03 years

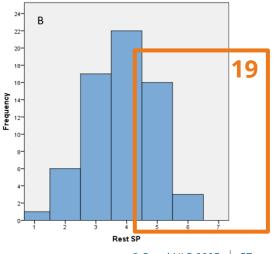
Number of CR reports per participant Count Number of CR reports

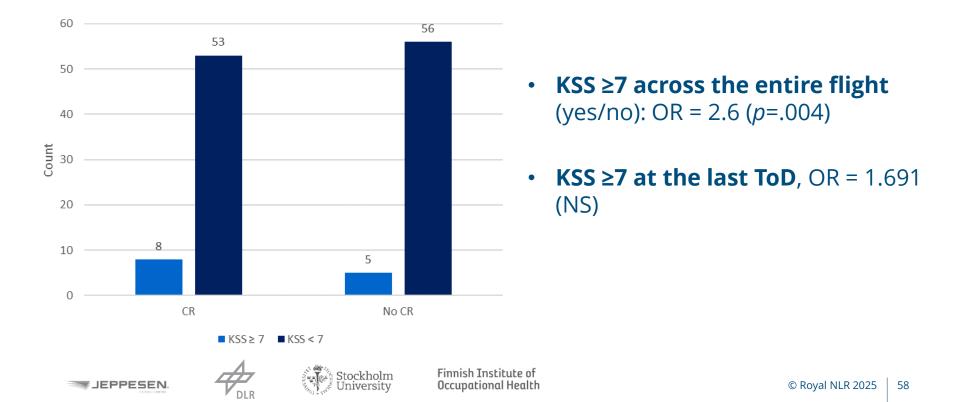



- Time of day (night), eastward flight direction, the number of time zones crossed and being in an X-state were significant predictors of CR
- In the multivariable analyses, eastward flight direction, time zones crossed and being in an X-state remained significant

- 6 CR instances (7.5%) were longer than 45 minutes
- 20 (25%) included more than 30 minutes sleep


Variable	Outcomes
CR duration (mins)	34.51±24.2
Sleep within CR (mins)	24.15±19.2
Awake within CR (mins)	19.06±20.7
Percentage sleep within CR	51.3±33.9
Mean KSS after rest	4.82±1.8
Mean SP after rest	3.85±1.1




Stockholm

Jniversitv

- Time awake at end of FDP, time of day (night), eastward flight direction, and being in an X-state are significant predictors of high fatigue at ToD
- In the multivariable analyses, only eastward flight direction, time of day (night), and CR usage remain significant

- 1. FDPs with **CR** are characterized by a **higher number of time zones crossed**, **eastward flight direction**, and being in an **X-state**.
- The mean duration of CR found is ± 30 minutes, with ± 24 minutes of sleep. More than 1/3 of the CR observations were because of prevention of expected fatigue.
- 3. Higher occurrence of high fatigue in FDPs with CR in comparison to matched flights without CR
 - But NOT with high fatigue at last ToD. **Positive effect of CR?**

Questions

- Discussion with stakeholders
 - here & now
- Reflection & merge / drafting recommendations / overall conclusions
 - D2.5/ D2.6 / D2.7
 - May 1st 2025
- Final dissemination event with Mirror Group
 - May 28th 2025

Thank you for your attention!

Accelerating the future of aerospace

Royal NLR - Netherlands Aerospace Centre

Anthony Fokkerweg 2 1059 CM Amsterdam The Netherlands 2 +31 88 511 31 13

ĭnfo@nlr.nl ⊕ www.nlr.org

Voorsterweg 31 8316 PR Marknesse The Netherlands 2 +31 88 511 44 44 Alwin van Drongelen Senior Scientist Safety and Human Performance

J +31 621 31 69 72
 S alwin.van.drongelen@nlr.nl